THE MULTI-AGENT PLAYBOOK

An Architectural Blueprint for Production-Ready Systems

WORKER
AGENT

WORKER
AGENT

DELEGATION

«— QRCHESTRATION

WORKER
AGENT

WORKER
AGENT

WORKER
AGENT

B
\

ISOLATION

ARTIFACTS

The engineering paradigm has shifted from
single agents to coordinated systems.

Single-agent prototypes have proven the YESTERDAY TODAY
potential of agentic work. However, _ .
scaling this capability to solve real-world The Leap in Complexity
engineering problems requires moving ;
beyond a single chat window. /\ Q O
Sub-Agent Sub-Agent

The new frontier is building well- T Q_}
coordinated multi-agent systems where O O . VL
specialized agents collaborate on ~ > ~ > @

lex, long-running tasks. =S
complex, long-running tasks " o ol Gmhestran?m\,\ O
This introduces a critical challenge: How SLtEcht
do you manage delegation, state,

execution, and failure without creating Q 5

chaos? The answer lies in a robust O Sub-Agent
3 Sub-Agent
architectural pattern.

The core patternis a closed-loop system led by an Orchestrator.

Core Principle Statement: You do not prompt your sub-agents. You prompt your
primary agent, and the primary agent prompts your sub-agents. They respond
back to the primary agent, which synthesizes the information for you.

User

Synthesized
Pmmth/Hespnnse

| | Orchestrator
@ Agent

-": Result1 Result3
Task 3
Task1 | ocko -' The General Contractor Model

-

The Orchestrator is a General Contractor
N who holds the master blueprint. The Sub-
F-__H'ESU|’[1 Result 2 .

Agents are specialized trades (eiectricians,

Worker .. e - Worker plumbers) who receive specific instructions
Sub-Agent Sub-Agent and report their progress back to the

contractor, not the homeowner.
Worker

Sub-Agent

The minimum viable stack prioritizes intelligence at every layer.

This architecture is powered by a specific set of tools. The recommended strategy has shifted from a tiered model
hierarchy to a uniform, high-intelligence stack. As the source material states: “Right now it looks like Opus is going
to be both the workhorse and the powerful model.”

Claude Opus 4.5 Claude Code (CLI)

Used for both the Orchestrator and all
Sub-Agents. It is specifically trained to be a the “agent harness,” providing the
“prompt engineer” for other agents, execution environment for the Orchestrator
making it ideal for delegation. to run and spawn sub-processes.

The command-line interface that acts as

Built-in “Task Tool” A Markdown File

Al
Opus 4.5 uses a native tool to explicitly MD The immutable “master plan” containing a
write prompts for and hand off work to task-based list that the Orchestrator
sub-agents. Activated via prompt flags — ingests to decompose and delegate work.
like “parallel=true’.

A robust multi-agent system is supported
by five architectural pillars.

@ € 0 & &

™ ™ ™ " e ™ N ™ N O

COMMUNICATION EXECUTION EMPOWERMENT STATE RESILIENCE

11V 11 111 111 g 1

() () [] [) ()
[1 [1 [1 [1 [1

Orchestrator Pattern

We will examine the core principle behind each pillar, the practice
of implementing it, and the payoff it delivers.

PILLAR I: COMMUNICATION

Agents communicate through closed loops
and verifiable artifacts.

THE PRINCIPLE THE PRACTICE
Sub-agents must report Information to Condense Information to Preserve
exclusively to the (Synthesis) (Artifacts & Signals)
Orchestrator, transmitting » Summaries of raw content « Files and Assets: Full, named
either high-level summaries (e.g., extracting keywords files (e.g., screenshots,
or unaltered, verifiable from a PDF). downloads).
artifacts. . . y

' . « Status and operational Test Logs: The “full complete
Direct user communication metrics (e.g., the "five file” of test results.
is forbidden. agent summary”). « Error Signals: Critical failures

must be transmitted in full to
trigger resolver steps.

THE PAYOFF

This creates Verifiable Workflows. The Orchestrator can
confirm task completion based on the presence of an artifact
and route the system based on clear error signals.

=

The Detective &
The Investigator

An investigator
(Sub-Agent) gives the
detective
(Orchestrator) a quick
summary (“The
suspect was here")
but also hands over
the unaltered bagged
evidence (Artifacts)
needed to close the
case.

PILLAR lIl: EXECUTION

Executionis a choice:

parallel for speed,
sequential for logic.

THE PRINCIPLE

The orchestration pattern must adapt to
the task’s dependencies. Independent
tasks should be parallelized for
throughput; interdependent tasks

must be sequential to ensure logical

integrity.

Orchestrator

THE PAYOFF

THE PRACTICE

| PARALLEL EXECUTION r ‘
el '@Q Worker

When: For independent tasks to "scale your compute to scale your impact.”

Use Cases: High-volume Ul testing (5 agents testing 5 user stories at once); simultaneous data
aggregation (one agent gets images, another gets text).

Pro/Can: Pro: Massive speed. Con: Agents cannot react to each other's work.

SEQUENTIAL EXECUTION |

Plan]—b[<& Build]=>[5= Host]—b[2 Test]

When: For "real engineering work” with strict dependencies.

Use Case: The Plan — Build — Host — Test workflow. The "Test" step cannot begin until the
"Host" step is complete.

Pro/Con: Pro: Logical and stable. Enables error recovery loops. Con: Slower elapsed time.

A Hybrid Approach. Advanced workflows use a sequential master plan (Plan — Build — Host — Test) but trigger
a parallel explosion of agents within a single step (e.g., the "Test" phase runs 50 Ul tests at once).

PILLAR Ill: EMPOWERMENT & ISOLATION

Empower agents with tools, but isolate them in sandboxes

THE PRINCIPLE

Instead of restricting an agent's tools to ensure safety, provide the “right
tooling” to maximize capability and restrict the environment to contain risk.

Functional Empowerment -
The ‘Right Tooling’

+ Provide comprehensive suites, not
minimal scripts (e.g., an "entire
browser suite tool").

« Run browsers in "headed mode”
for visual verification during
complex tasks.

« Deploy a custom "skill codebase"
for specialized tools (e.g., decision
matrix, graphing tool).

THE PAYOFF

This model enables agents to perform "nasty engineering work™ on full-stack
applications with a contained blast radius. A crashed agent simply means
one sandbox "aired out” while others continue unaffected.

Environmental Isolation - Sandboxes

E2B—— {5%.(©) O g

: i E'Elj -
_ - Worker

]

- Worker s - Worker

Agent / W / W /

- Give agents "their own isolated devices" using a sandbox provider like E2B.

- This provides "isolation, scale, and autonomy,” allowing an agent root-level
control to build and test an application without risking the host machine.

/i

The Private Workshop

Instead of a badge that opens one door (Restrictive), you give a worker a fully
stocked private workshop (Sandbox) with every power tool imaginable (Right
Tooling). They have total freedom inside, but cannot affect anything outside.

PILLARIV: STATE & HANDOFFS
State lives in the environment, not the agent's memory.

THE PRINCIPLE: To achieve persistence and enable handoffs between agent sessions, you must preserve the work
artifacts and the execution environment, not the agent's conversational history:.

THE PRACTICE

-~

1. The Environment Artifact:
The Hosted Sandbox

The live, running container (E2B)
where the application is hosted.
A new agent session simply
reconnects to this persistent
environment.

=

-~

THE PAYOFF

2. The Instructional Artifact:
The "Master Plan” File

MD

The static Markdown prompt file
that serves as the immutable
mission contract.

=

-~

Perfect recall and seamless multi-session handoffs. An agent
can resume work on a “brownfield code base” instantly, without
needing to “remember” what it did in a previous session.

3. The Result Artifact:
The “Full Complete File"

4

Summary logs, named assets
(e.g., downloaded images), and
error logs that agents write to the
file system before terminating.

-

4. The Codebase Artifact:
The “Brownfield” State

G

The source code itself. New
agents are instructed to read the
existing files and create PRs,
treating the file system as the
source of truth.

e
=0}

The Factory Shift Change

The next worker doesn't read the outgoing worker's mind.
They look at the machinery (Sandbox), check the SOP on
the clipboard (Master Plan), and read the logbook of finished

parts and errors (Result Artifacts).

PILLAR V: RESILIENCE
Resilience is architected through isolation and error routing.

THE PRINCIPLE
A single sub-agent failure must not derail the entire orchestration. The system must contain the “blast radius”
of a failure and have a built-in logic for recovery.

THE PRACTICE
Isolation - Blast Radius Containment Routing - The “Debug or Resolver” Step

@ Unaffected

Unaffected

E@ Plan
2

Unaffected Sandbox 5 Unaffected
“aired out”
(crashed) If the "Test" agent reports a failure, the Orchestrator doesn't
By giving every agent its own sandbox, a catastrophic failure is stop. It receives the error signal and routes the workflow back
contained to a single, disposable environment. to the "Build" step to apply a fix, creating a self-correcting loop.

THE PAYOFF
A robust, self-healing system that can manage complex, long-running tasks where individual component failures
are expected, not exceptional.

Managing Context: The Orchestrator holds the signal,
Sub-Agents absorb the noise.

The primary strategy for preventing context window overflow is distributed computing. The token load is split across
many distinct agents, with the Orchestrator acting as a compression filter.

Source Sans Pro Regular.

Execution Noise - High Context

« Raw Data (Entire POF text)

» Browser State (Full DOM)

« Detailed Logs ("full complete file®)
» Sandbox Environment Variables

Execution Noise - High Context

« Raw Data (Entire PDF text)

« Browser State (Full DOM)

» Detailed Logs (*full complete file”)
« Sandbox Environment Variables

Compresses

Executive Signal - Low Context

+ The Master Plan (Markdown File)

» The "Five Agent Summary” (Operational Metrics)
» Synthesized Qutputs ("pricing_summary.txt")

« Error Signals (Pass/Fail)

« Artifact References (Pointers to sandboxes)

Execution Noise - High Context

» Raw Data (Entire PDF text)
» Browser State (Full DOM)
» Detailed Logs (“full complete file")

Delegates i » Sandbox Environment Variables

The CEO and the Department Heads

A CEO (Orchestrator) doesn't read every employee email. They
rely on department heads (Sub-Agents) to manage the noise and
report back only the critical signals required to make decisions.

The complete architecture combines sequential

logic with parallel execution.

Lol Live Link
13

Orchestrator “kicks off five Opus 4.5 sub-agents”

-~

Orchestrator E2B Sandbox ’
— ‘ explodes
— _’ _> Builder _> Hosted <
- Agent App
AR Step 1: Plan Step 2: Build Step 3: Host §

A

=| User Story
Workflow 1

~

=| User Story
Workflow 2

=| User Story
Workflow 4

-

@

@ |]=:.— User Story
Workflow 3

N

NE

=| User Story
Workflow 5

Step 4: Test

Five Agent
Summary

**Debug/Resolver Loop on Failure.

This hybrid model provides the logical stability of a pipeline with the massive

throughput of parallel processing at the most critical validation stage.

|

Performance is measured by review velocity
and verifiable outcomes.

Traditional software metrics are insufficient. In agentic engineering, the key constraint is the human
review cycle. The best systems are those that deliver self-validated, verifiably correct work.

Review Velocity [r%] Tool Calls to Completion
The primary metric. How quickly can a : ! A smarter model is cheaper.
P y i :DlLl ; — %
L

human confirm the work is correct? A “If Opus does the job in 5 tool calls
system that builds an app and a passing and Sonnet takes 10, you have still

test suite reduces review time to near-zero. ComplexPath Optimized Path S@ved money.”
10 Calls 5 Calls

[

required artifact (a file, a PNG, a database health check, tracking “tool uses and

entry) get created? Performance is token usage as value generated” to

validated by checking the file system, not Efficient spot inefficient or looping agents.
the agent's chat log.

N Artifact Validation Resource Observability
The ultimate success metric. Did the F/\ The “Five Agent Summary” provides a

O<<
Ly

The goal is not to build the application. ltis to
build the system that builds the appllcatlon

Moving into production with multi-agent systems requires a fundamental shift in Orcl f e Opus
perspective. We are no longer just prompt engineers talking to a single model; we are

system architects designing resilient, scalable, and observable agentic frameworks.

The agent is the new compositional unit of engineering.

j—»@—»é Yed | ISOLATE @

Step 1: Plan Step 2: Build Jost _ Five Agent
et summary

ORCHESTRATE ' i

**Debug/Resolver Loop on Failure.
