spine-showcase

SPINE - Multi-Agent Orchestration System

A context engineering and multi-agent backbone framework for complex software development workflows.

License: MIT Status Version Live Site Demos


Overview

SPINE (Software Pipeline for INtelligent Engineering) provides standardized instrumentation, multi-provider LLM access, and orchestration patterns that connect agentic projects for long-running, complex development workflows.

Key Capabilities

Capability Description
πŸ”„ Multi-Agent Orchestration Fan-out (parallel) and Pipeline (sequential) patterns
πŸ“Š Full Traceability ToolEnvelope instrumentation with hierarchical trace correlation
πŸ€– Multi-Provider Support Anthropic, OpenAI, Google Gemini, Grok
πŸ“‹ Tiered Enforcement Balanced capability usage based on task complexity
🧠 Context Stacks Reproducible, structured context management via YAML scenarios
πŸ” Agentic Loop Autonomous β€œrun until done” with oscillation detection
πŸ“ AI Code Review Multi-persona parallel review with consensus ranking
πŸ“ˆ Observability Static HTML reports, REST API, health checks
βš™οΈ Pluggable Executors SubagentExecutor (personas) and ClaudeCodeExecutor (CLI)
🧠 Persistent Memory Optional Minna Memory integration for cross-session memory

πŸ—οΈ Architectural Foundation: The Multi-Agent Playbook

SPINE implements patterns from the Multi-Agent Playbookβ€”an architectural blueprint for production-ready multi-agent systems that addresses the core challenge: How do you manage delegation, state, execution, and failure without creating chaos?

The General Contractor Model

SPINE follows a closed-loop orchestrator pattern where:

User
  β”‚
  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              SPINE Orchestrator              β”‚
β”‚  AgenticLoop + ToolEnvelope instrumentation β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚ fan_out() or pipeline()
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β–Ό           β–Ό           β–Ό
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”
   β”‚Worker β”‚   β”‚Worker β”‚   β”‚Worker β”‚
   β”‚Agent 1β”‚   β”‚Agent 2β”‚   β”‚Agent 3β”‚
   β””β”€β”€β”€β”¬β”€β”€β”€β”˜   β””β”€β”€β”€β”¬β”€β”€β”€β”˜   β””β”€β”€β”€β”¬β”€β”€β”€β”˜
       β”‚           β”‚           β”‚
       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                   β”‚ Results via ToolEnvelope
                   β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         Synthesized Response to User         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

The Five Pillars

SPINE implements all five architectural pillars from the blueprint:

Pillar Blueprint Principle SPINE Implementation
I. Communication Closed loops, verifiable artifacts ToolEnvelope result wrapping, structured logs
II. Execution Parallel for speed, sequential for logic fan_out() and pipeline() patterns
III. Empowerment Right tooling in isolated environments MCP integration, TraceScope boundaries
IV. State State in environment, not agent memory NEXT.md integration, Context Stacks
V. Resilience Blast radius containment, error routing OscillationTracker, LoopVerdict system

Context Management: Signal vs. Noise

The Orchestrator holds executive signal (low context), while sub-agents absorb execution noise (high context):

Orchestrator Context (Signal)          Sub-Agent Context (Noise)
β”œβ”€β”€ Master Plan                        β”œβ”€β”€ Full document content
β”œβ”€β”€ Operational metrics                β”œβ”€β”€ Raw API responses
β”œβ”€β”€ Synthesized outputs                β”œβ”€β”€ Detailed logs
└── Error signals                      └── Environment state

β†’ Read the full Blueprint Implementation Guide

β†’ View the Multi-Agent Playbook (PDF)


Architecture

SPINE operates across three distinct capability layers:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Layer 1: Claude Native                    β”‚
β”‚  Built-in Task tool with subagent_types                     β”‚
β”‚  (Explore, Plan, code-architect, visual-tester, etc.)       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Layer 2: MCP Servers                      β”‚
β”‚  External tools via Model Context Protocol                   β”‚
β”‚  (browser-mcp, next-conductor, research-agent-mcp)          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                   Layer 3: SPINE Python                      β”‚
β”‚  Custom orchestration framework                              β”‚
β”‚  (fan_out, pipeline, ToolEnvelope, AgenticLoop)             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Context Stack Structure

SPINE uses a hierarchical context stack for consistent LLM interactions:

{
  "global": { "operator": "...", "brand": "..." },
  "character": { "speaker": "...", "audience": "..." },
  "command": { "task": "...", "success": "..." },
  "constraints": { "tone": "...", "format": "...", "do": [], "dont": [] },
  "context": { "background": "...", "references": [] },
  "input": { "user_request": "..." }
}

Module Structure (v0.3.21)

spine/
β”œβ”€β”€ core/           # ToolEnvelope, TraceScope
β”œβ”€β”€ client/         # InstrumentedLLMClient, provider configs
β”œβ”€β”€ patterns/       # fan_out(), pipeline()
β”œβ”€β”€ orchestrator/   # AgenticLoop, OscillationTracker, TaskQueue
β”‚   β”œβ”€β”€ context_stack.py    # Context stack loader/builder
β”‚   └── executors/          # Pluggable executors
β”‚       β”œβ”€β”€ base.py         # Executor interface
β”‚       β”œβ”€β”€ subagent.py     # SubagentExecutor + context stacks
β”‚       β”œβ”€β”€ claude_code.py  # ClaudeCodeExecutor (CLI subprocess)
β”‚       └── mcp_orchestrator.py  # MCPOrchestratorExecutor (NEW)
β”œβ”€β”€ memory/         # kv_store, vector_store, scratchpad
β”œβ”€β”€ review/         # AI-powered code review
β”œβ”€β”€ integration/    # Token-optimized MCP execution
β”œβ”€β”€ enforcement/    # Tiered enforcement gate
β”œβ”€β”€ health/         # Component health monitoring
β”œβ”€β”€ api/            # FastAPI REST API + /api/reviews
β”œβ”€β”€ reports/        # Static HTML report generator
└── logging/        # Structured JSON logging

Tiered Enforcement Protocol

SPINE balances capability usage against overhead costs through a three-tier system:

Tier Task Type Enforcement Examples
Tier 1 Simple None required Typo fixes, single-file edits
Tier 2 Medium Recommended Multi-file changes, new features
Tier 3 Complex Mandatory Architecture decisions, research, UI-heavy

Why Tiered Enforcement?

Factor Consideration
Token Cost Parallel subagents = 2-6x cost increase
Latency Subagent spawn adds 10-30 seconds
Over-engineering Simple tasks don’t need orchestration
Context Fragmentation Subagents don’t share full conversation context

β†’ Try the Interactive Tier Classifier


Core Patterns

Fan-Out (Parallel Execution)

Execute multiple tasks simultaneously with automatic result aggregation:

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚   Parent    β”‚
                    β”‚  Envelope   β”‚
                    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
           β–Ό               β–Ό               β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  Analyst A β”‚  β”‚  Analyst B β”‚  β”‚  Analyst C β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚               β”‚               β”‚
           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                           β–Ό
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚  Aggregate  β”‚
                    β”‚   Results   β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Use Cases: Research tasks, parallel code analysis, multi-source data gathering

Pipeline (Sequential Processing)

Chain processing steps with automatic result transformation:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Analyze β”‚ ──▢ β”‚ Extract β”‚ ──▢ β”‚Transformβ”‚ ──▢ β”‚Synthesizeβ”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Use Cases: Document processing, staged analysis, build pipelines

Agentic Loop (Autonomous Execution)

Run tasks until completion with built-in resilience:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     AgenticLoop                          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”‚
β”‚  β”‚  Task   │───▢│ Execute  │───▢│ Evaluate  β”‚           β”‚
β”‚  β”‚  Queue  β”‚    β”‚          β”‚    β”‚           β”‚           β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜           β”‚
β”‚                                       β”‚                  β”‚
β”‚       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚
β”‚       β”‚                               β”‚          β”‚      β”‚
β”‚       β–Ό                               β–Ό          β–Ό      β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚   β”‚ ACCEPT β”‚                    β”‚ REVISE β”‚  β”‚ REJECT β”‚  β”‚
β”‚   β”‚  Done  β”‚                    β”‚ Retry  β”‚  β”‚  Skip  β”‚  β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                                                          β”‚
β”‚  OscillationTracker: Detects stuck states               β”‚
β”‚  (A-B-A-B patterns, repeated errors)                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

ToolEnvelope (Instrumentation)

Every LLM call is wrapped for full traceability:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              ToolEnvelope               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  id: "call-abc123"                      β”‚
β”‚  tool: "anthropic:claude-sonnet-4-5"    β”‚
β”‚  trace:                                 β”‚
β”‚    root_id: "task-xyz"                  β”‚
β”‚    parent_id: "orchestrator-001"        β”‚
β”‚    span_id: "subagent-research"         β”‚
β”‚  metadata:                              β”‚
β”‚    tags: ["research", "phase-1"]        β”‚
β”‚    experiment_id: "exp-2025-001"        β”‚
β”‚  metrics:                               β”‚
β”‚    tokens_in, tokens_out, latency_ms    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Interactive Demos

View all demos β†’

Demo Description
Tier Classifier Determine the appropriate enforcement tier for any task
Provider Picker Choose the right LLM provider based on your task type
Cost Calculator Estimate API costs by model and token usage
Fan-Out Simulator Visualize parallel task execution with configurable workers
Pipeline Builder Build and simulate sequential processing chains

Use Cases

Autonomous Software Development

SPINE enables coordinated multi-agent workflows for:

Project Integration

SPINE has been successfully integrated with:

Project Integration Type
Golden Thread System Full MVP development with tiered enforcement
spine-dashboard Real-time monitoring via SPINE API
Adaptivearts.ai Research and content generation workflows

Technical Highlights

Multi-Provider Support

Provider Models Status
Anthropic Claude Opus 4.5, Sonnet 4.5, Haiku 4.5 βœ… Active
OpenAI GPT-5.1, GPT-5 mini βœ… Active
Google Gemini 3 Pro, Gemini 3 Flash βœ… Active
xAI Grok βœ… Active

Observability Stack

Component Purpose
spine/logging/ Structured JSON logs with trace hierarchy
spine/api/ FastAPI REST API with OpenAPI docs
spine/reports/ Self-contained HTML reports with Chart.js
spine/health/ Component health monitoring

CLI Tools

# Run orchestrator with SubagentExecutor (uses .claude/agents/ personas)
python -m spine.orchestrator run --project /path --executor subagent

# Run orchestrator with ClaudeCodeExecutor (spawns CLI subprocess)
python -m spine.orchestrator run --project /path --executor claude-code --executor-budget 10.0

# Run with context stacks from scenario files
python -m spine.orchestrator run --project /path --executor subagent --scenario scenarios/research.yaml

# Run with LLM evaluation
python -m spine.orchestrator run --project /path --llm-eval

# Generate reports
python -m spine.reports generate --title "Sprint Report" --days 7

# Health checks
python -m spine.health --verbose

# Code review
python -m spine.review . --parallel

# Start API server
python -m spine.api --port 8000

Documentation

Document Description
Blueprint Implementation How SPINE implements the Multi-Agent Playbook
Architecture Overview System design and components
Pattern Guide Fan-out and Pipeline usage
Tiered Protocol Full enforcement protocol
Executor Framework SubagentExecutor, ClaudeCodeExecutor, MCPOrchestratorExecutor
Context Stack Integration YAML scenario files for prompt building
MCP Orchestrator Integration Optional intelligent tool routing
Minna Memory Integration Persistent cross-session memory (NEW)
Claude Code Automation Disable prompts, auto-reload context

Reference Materials

Resource Description
Multi-Agent Playbook (PDF) Architectural blueprint for production-ready multi-agent systems

Version History

Version Highlights
0.3.22 Minna Memory Integration - persistent cross-session memory with graceful fallback
0.3.21 MCP Orchestrator Integration - optional intelligent tool routing with graceful fallback
0.3.20 Context Stack Integration - executors use scenarios/*.yaml for prompt building
0.3.19 Executor Framework - SubagentExecutor, ClaudeCodeExecutor with pluggable design
0.3.18 Dashboard integration - /api/reviews endpoints for review history
0.3.17 Inline diff annotations, cost tracking per review
0.3.16 NEXT.md integration for AgenticLoop
0.3.15 create_spine_llm_evaluator() factory
0.3.14 Static HTML report generator
0.3.13 FastAPI REST API surface
0.3.12 Health check system, common utilities
0.3.11 Tier enforcement gate (commit-msg hook)
0.3.10 Token-optimized MCP execution (57-87% savings)
0.3.9 ConflictResolver for multi-agent synthesis
0.3.6-8 AI-powered code review module

About

SPINE is developed as part of the AdaptiveArts.ai research initiative, focusing on intelligent software development workflows and multi-agent coordination.

The Meta-Goal

β€œThe goal is not to build the application. It is to build the system that builds the application.”

SPINE embodies this philosophyβ€”it’s a backbone framework that enables building applications through orchestrated multi-agent workflows.

Contact


License

This project is licensed under the MIT License.